Ejemplos de Permutaciones
https://www.youtube.com/watch?v=_m3Fjngw4hE
Se llama permutaciones de m elementos (m = n) a las diferentes agrupaciones de esos m elementos de forma que:
Sí entran todos los elementos.
Sí importa el orden.
No se repiten los elementos.
1. Calcular las permutaciones de 6 elementos.
P6 = 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720
2. ¿Cuántos números de 5 cifras diferentes se puede formar con los dígitos: 1, 2, 3, 4, 5?
m = 5 n = 5
Sí entran todos los elementos.
Sí importa el orden.
No se repiten los elementos. El enunciado nos pide que las cifras sean diferentes.
Las permutaciones circulares son un caso particular de las permutaciones.
Se utilizan cuando los elementos se han de ordenar "en círculo", (por ejemplo, los comensales en una mesa), de modo que el primer elemento que "se sitúe" en la muestra determina el principio y el final de muestra.
1. Calcular las permutaciones circulares de 7 elementos.
PC7= (7 − 1)! = 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720
2. ¿De cuántas formas distintas pueden sentarse ocho personas alrededor de una mesa redonda?
Permutaciones con repetición de n elementos donde el primer elemento se repite a veces , el segundo b veces , el tercero c veces, ...
n = a + b + c + ...
Son los distintos grupos que pueden formarse con esos n elementos de forma que :
Sí entran todos los elementos.
Sí importa el orden.
Sí se repiten los elementos.
Calcular las permutaciones con repetición de: .
2. Con las cifras 2, 2, 2, 3, 3, 3, 3, 4, 4; ¿cuántos números de nueve cifras se pueden formar?
m = 9 a = 3 b = 4 c = 2 a + b + c = 9
Sí entran todos los elementos.
Sí importa el orden.
Sí se repiten los elementos.
3. En el palo de señales de un barco se pueden izar tres banderas rojas, dos azules y cuatro verdes. ¿Cuántas señales distintas pueden indicarse con la colocación de las nueve banderas?
Sí entran todos los elementos.
Sí importa el orden.
Sí se repiten los elementos.
No hay comentarios:
Publicar un comentario